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Introduction

Fusarium head blight (FHB), caused by different Fusarium 
species, affects small grains throughout the world (McMul-
len et al. 1997). FHB causes severe yield and quality losses, 
but the primary food safety issue is the contamination of 
the crops with mycotoxins (Dexter and Nowicki 2003; de 
Nijs et  al. 1996; Beardall and Miller 1994). This is par-
ticularly relevant for durum wheat (Triticum durum Desf.), 
because it is used almost exclusively for human nutrition. 
Durum wheat was reported early to appear more suscepti-
ble than bread wheat (Atanasoff 1920), and durum wheat 
cultivars are still generally considered susceptible to 
FHB. Almost no variation in resistance to FHB has been 
found within T. durum, with most lines being susceptible, 
even among large germplasm collections of several thou-
sand lines (Stack et al. 2002; Elias et al. 2005). Recently, 
five T. durum lines from a Tunisian source with moderate 
FHB resistance were identified by single-floret inocula-
tion with Fusarium spore suspensions (Huhn et  al. 2012) 
and four Syrian durum landraces showed stable resistance 
after spray inoculation (Talas et  al. 2011). With the aim 
of expanding the resistance resources for durum breeders, 
related tetraploid species have been screened. Lines with 
moderate to good resistance to FHB were found in T. dico-
ccoides, T. dicoccum, and T. carthlicum (Buerstmayr et al. 
2003a; Oliver et al. 2007, 2008).

Inheritance of resistance to FHB in wheat is of a quan-
titative, polygenic nature (Bai and Shaner 1994). Geno-
type-by-environment interactions and the complex nature 
of FHB resistance make breeding for improved resist-
ance challenging. Different types of resistance have been 
described (Schroeder and Christensen 1963; Mesterhazy 
1995), of which resistance to initial infection (type 1) 
assessed by spray inoculation and resistance to fungal 
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spread within the spike (type 2) assessed by single-floret 
inoculation are frequently evaluated in QTL mapping. 
Schroeder and Christensen (1963) observed that type 1 and 
2 resistance varied independently among cultivars. In sev-
eral studies, different QTL and/or dissimilar estimates of 
QTL effects for type 1 or 2 resistance have been observed 
in the same plant material (Buerstmayr et al. 2002, 2003b, 
2009; Lin et  al. 2004, 2006; Chen et  al. 2006). Type 2 
resistance is generally considered to be less influenced by 
environmental variation than type 1, and many research-
ers (Bai and Shaner 1996; Schroeder and Christensen 
1963; Wang and Miller 1988) have concluded that resist-
ance to fungal spread within the spike provides one of the 
most reliable estimates of FHB resistance. This reliability 
may rest on the direct placement of inocula into the flo-
rets, reducing escapes from infection. Moreover type 2 
resistance evaluations are usually performed in greenhouse 
experiments, with better-controlled environments and thus 
less influence from genotype-by-environment interactions.

Although numerous mapping studies have been con-
ducted in bread wheat, resulting in more than 100 reported 
QTL for FHB resistance, relatively little research has been 
done to evaluate resistance to FHB in tetraploid wheat 
(reviewed by Buerstmayr et al. 2009). To date, QTL map-
ping analysis has characterized the genetics of only six 
tetraploid resistance sources, comprising three different  
T. dicoccoides lines or accessions (Otto et al. 2002; Stack 
and Faris 2006; Kumar et  al. 2007; Gladysz et  al. 2007), 
one T. carthlicum cultivar (Somers et  al. 2006) and two  
T. dicoccum lines (Buerstmayr et  al. 2012; Ruan et  al. 
2012). An association-mapping study examined resistance 
in a breeding population derived from Tunisian by USA T. 
durum crosses (Ghavami et al. 2011). The so far published 
studies in tetraploid wheat resulted in reports of QTL on 
chromosome 3A (Otto et al. 2002; Gladysz et al. 2007), 4A 
(Gladysz et  al. 2007), 6A (Buerstmayr et  al. 2012), 7AL 
(Kumar et al. 2007; Ruan et al. 2012), 2BL (Somers et al. 
2006; Gladysz et  al. 2007), 3B (Buerstmayr et  al. 2012; 
Ruan et  al. 2012), 4B (Gladysz et  al. 2007; Buerstmayr 
et  al. 2012), 5BL (Ghavami et  al. 2011), 6BS (Stack and 
Faris 2006; Somers et  al. 2006; Buerstmayr et  al. 2012), 
and 7B (Buerstmayr et al. 2012). QTL on 3A, derived from 
either T. dicoccoides accession Israel A (Otto et al. 2002) or 
T. dicoccoides line Mt. Hermon #22 (Gladysz et al. 2007), 
mapped close to marker Xgwm2. QTL on 6BS, derived 
from T. carthlicum cultivar Blackbird (Somers et al. 2006) 
or from T. dicoccum line 161 (Buerstmayr et al. 2012) coin-
cided with Fhb2 (Cuthbert et  al. 2007), and QTL on 4B 
derived from T. diccocum-161 co-mapped with the plant 
height allele Rht-B1a (Buerstmayr et al. 2012).

Negative associations between plant height and FHB 
severity were frequently apparent in field trials conducted 
by spray inoculation—shorter lines tended to be more 

diseased—and QTL for FHB severity and plant height 
co-localized several times (Buerstmayr et  al. 2011, 2012; 
Draeger et al. 2007; Gervais et al. 2003; Handa et al. 2008; 
Klahr et al. 2007; Paillard et al. 2004; Schmolke et al. 2005, 
2008; Srinivasachary et al. 2008). For example, in a T. dico-
ccum (line 161) × T. durum (cultivar Helidur) population a 
strong association of QTL for FHB severity with the plant 
height gene Rht-B1 was detected (Buerstmayr et al. 2012). 
Such a relationship was not found in studies where type 2 
resistance with single-floret inoculations was tested.

Mt. Gerizim #36 and Mt. Hermon #22 were the lines 
with the lowest FHB disease ratings among a set of 151  
T. dicoccoides genotypes tested by Buerstmayr et  al. 
(2003a). The objectives of the present study were to char-
acterize resistance to fungal spread of Mt. Gerizim #36 in a 
backcross population using Mt. Gerizim #36 as donor par-
ent and the Austrian T. durum cultivar Helidur as recurrent 
parent and to evaluate the relationship between type 2 FHB 
resistance and plant height in this population.

Materials and methods

Plant material

A population of 103 BC1F6 lines was developed from a 
cross between the T. dicoccoides line Mt. Gerizim #36 
and the Austrian T. durum cultivar Helidur. F1 plants were 
backcrossed as female to Helidur. The resulting 103 BC1F1 
plants were advanced by single-seed-descent to the BC1F6 
generation. Seed from each BC1F6 plant was bulked, to 
yield BC1F6:7 lines, which formed the plant material for 
genotyping and phenotyping. The resistance donor par-
ent Mt. Gerizim #36 was identified as moderately type 2 
FHB resistant by Buerstmayr et  al. (2003a). Mt. Gerizim 
#36 originates in a collection of the Institute of Evolution, 
University of Haifa, Israel. It is a hulled wheat with brittle 
rachis, has a short and awned spike phenotype and tough 
glumes, and is tall and sensitive to lodging. The Austrian 
T. durum cultivar Helidur with pedigree Pandur/CPB132/
3/Valdur//Pandur/Valgerado was used as recurrent parent. 
Helidur is susceptible to FHB and has a dense-spike phe-
notype and long awns. Helidur carries the semi-dwarfing 
allele Rht-B1b.

FHB resistance evaluation

The 103 BC1F6:7 lines, both parents and several control 
lines were tested for type 2 resistance using single-floret 
inoculations. Four independent inoculation experiments 
were conducted in the greenhouse: winter 2007/08, spring 
2008, winter 2008/09, and spring 2009; hereafter abbre-
viated as GW07, GS08, GW08, and GS09, respectively. 



2827Theor Appl Genet (2013) 126:2825–2834	

1 3

Experiments were arranged in a randomized complete 
block design with two replicates in GW07 and GS09, and 
three replicates in GS08 and GW08. Replicates were inten-
tionally planted several days apart, resulting in a few days 
difference in anthesis between the replicates.

Seeds were germinated in multi-trays and seedlings 
(1–2 leaf stage) were vernalized at 4  °C for 4–6  weeks. 
Six to eight vernalized seedlings were planted in 4  l pots 
(16 cm diameter, 20 cm height) filled with a standard pot-
ting mix consisting of 70 % recycled compost, 28 % peat, 
and 2 % silica sand in the greenhouse experiments. Tem-
perature regime was 14  °C/10  °C day/night with a 12  h 
photoperiod for the first 30 days and then increased to 20–
22  °C/18  °C day/night with a 16  h photoperiod. For fun-
gal disease control, greenhouse cabins were treated with 
vaporized sulphur twice per week until BBCH stage 37. 
For insect control, plants were treated with the insecticide 
1-(6-chlor-3-pyridinylmethyl)-N-nitroimidazolidin-2-ylide-
namin (brand name Confidor® WG70, Bayer Crop Science,  
Germany) 0.1  g/l in aqueous solution at the late tillering 
stage (BBCH 29).

A macro conidial suspension of F. graminearum single-
spore isolate ‘IFA-104’, prepared as described by Buer-
stmayr et  al. (2002), was used for the greenhouse experi-
ments. Conidia aliquots were stored at −30  °C. Prior 
to inoculation, frozen aliquots were thawed at 37  °C and 
diluted to a concentration of 50,000 conidia/ml with dis-
tilled water. Individual florets of the spikes were inocu-
lated slightly above the center of the spike at mid-anthesis. 
In experiment GW07 a 10  μl droplet of conidia suspen-
sion was directly pipetted into two florets, avoiding any 
injury of the spike. In experiments GS08, GW08, and 
GS09, a micropipette equipped with an injection needle 
was punched through the outer glumes, and 10 μl inocu-
lum suspension was injected into one spikelet per spike. 
On average eight spikes per genotype were inoculated in 
each replicate. After inoculation, spikes were covered over-
night with translucent polyethylene bags to maintain high 
humidity.

The number of FHB symptomatic or bleached spike-
lets was counted as infected spikelets (NIS), and the total 
number of spikelets per spike (TNS) was counted at day 21 
post inoculation, and the percentage of infected spikelets 
per spike (PIS) was calculated. PIS was used as measure 
for FHB spread within the spike (type 2 resistance sensu 
Schroeder and Christensen 1963).

Plant height was measured in experiments GS08, GW08, 
and GS09.

Molecular marker analysis

Genomic DNA was extracted from fresh leaves of 10 
pooled plants of each BC1F6:7 line and of the parental 

lines using a simplified CTAB-based procedure modi-
fied from Saghai Maroof et  al. (1984). All lines were 
genotyped with 116 simple sequence repeat (SSR) mark-
ers, composed of 42 BARC markers (Song et  al. 2005), 
66 GWM markers (Roeder et  al. 1998), seven WMC 
markers (Somers et  al. 2004), one CFA marker (Sour-
dille et  al. 2001), and allele specific markers discrimi-
nating Rht-B1a/Rht-B1b (Ellis et  al. 2002). SSR marker 
analysis was done as described by Steiner et  al. (2004). 
Lines were additionally screened with 59 amplified frag-
ment length polymorphism (AFLP) primer combinations. 
AFLP marker analysis (Vos et  al. 1995) was performed 
using MseI/Sse8387I restriction enzymes as described by 
Hartl et  al. (1999) and Buerstmayr et  al. (2002). AFLP 
markers were abbreviated according to the standard list 
of AFLP primer nomenclature (http://wheat.pw.usda.
gov/ggpages/keygeneAFLPs.html) followed by a number 
that refers to a specific polymorphic band.

Statistical analysis

Phenotypic data

Means of the phenotypic traits within replicates and 
within experiments were calculated and used for statisti-
cal analysis. Pearson correlation coefficients were cal-
culated for PIS between experiments and between means 
over all experiments for PIS, NIS, TNS, and plant height. 
The effects of replicates within experiments, experiment, 
genotype, and genotype-by-experiment interaction were 
estimated using the general linear model (GLM) proce-
dure, with all effects fixed. Broad-sense heritability was 
estimated from variance components with the equation 
H

2
= σ 2

G
/(σ 2

G
+ σ 2

G×E
/e + σ 2

ε /en), where σ 2

G
  =  geno-

typic variance, σ 2

G×E
  =  genotype-by-experiment interac-

tion variance, σ 2
ε  = error variance, e = number of experi-

ments, and n =  number of replicates (Nyquist 1991). For 
the estimation of variance components and broad-sense 
heritability all effects were considered random. ANOVA 
and correlation analyses were calculated in SAS/STAT ver-
sion 9.2 (SAS Institute Inc 2008).

Marker data

Conformity of marker segregation with expected ratios was 
determined by Chi square tests. Map construction was done 
with CarthaGene 1.2-LKH (de Givry et al. 2005) specify-
ing a BC1F6 genetic model. Distances between markers 
in cM were calculated based on the Kosambi mapping 
function. SSR markers, particularly their map informa-
tion from GrainGenes (http://wheat.pw.usda.gov/ggpages/
maps.shtml), were used as reference points to assign link-
age groups to specific chromosomes.

http://wheat.pw.usda.gov/ggpages/keygeneAFLPs.html
http://wheat.pw.usda.gov/ggpages/keygeneAFLPs.html
http://wheat.pw.usda.gov/ggpages/maps.shtml
http://wheat.pw.usda.gov/ggpages/maps.shtml
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QTL analysis

QTL analysis was done with QGene (version 4.3.10,  
Nelson 1997). QTL were identified using simple interval 
mapping (SIM, Haley and Knott 1992) and composite inter-
val mapping (CIM, Zeng 1994) as implemented in QGene. 
The support interval of a QTL was declared as the map dis-
tance with a LOD decrease of 2 from the maximum LOD 
position. The percentage of phenotypic variance explained 
by a QTL and its additive effect were calculated. The 
critical LOD values at a type I error rate of α 0.1 < LOD,  
α 0.05  <  LOD, and α 0.01  <  LOD were determined by 
1,000 permutations. We fitted a linear model of all sig-
nificant QTL simultaneously using the GLM procedure of 
SAS/STAT to estimate the total percentage of phenotypic 
variance explained by QTL. Linkage groups and LOD pro-
files were drawn with MapChart 2.2 (Voorrips 2002).

Results

Trait variation and correlation

The backcross-derived mapping population allowed reducing 
the frequency of T. dicoccoides-like plant types, and most of 
the lines had a durum wheat-like phenotype. The frequency 
distributions of the lines for PIS and for NIS are depicted in 
Fig. 1. The histogram for NIS shows a bimodal distribution 

with a peak at five and a second peak at eight infected spike-
lets—these peaks correspond to 30 and 60 % infected spike-
lets for PIS, respectively. The T. durum parent Helidur devel-
oped on average three times more diseased spikelets (NIS 
7.6) than the T. dicoccoides parent Mt. Gerizim #36 (NIS 
2.7) across all experiments (Table 1). The hexaploid control 
line CM-82036 (highly type 1 and 2 resistant) showed con-
sistently only one infected spikelet per spike, resulting in 6 % 
PIS, and the cultivar Frontana (type 1 resistant, type 2 sus-
ceptible) had an average of 54 % (means across experiments). 
Transgressive segregation towards susceptibility was apparent 
in all experiments. About 20 % of the lines reached signifi-
cantly higher infection severity for means across all experi-
ments (Fig.  1; Table  1) compared to the susceptible parent 
Helidur. Means of the parents, means and ranges of the popu-
lation, least significant differences and broad-sense heritabil-
ity for PIS, NIS, TNS, and plant height are summarized in 
Table 1. Correlation coefficients for PIS between greenhouse 
experiments ranged from r = 0.40 to 0.71 (p < 0.0001). TNS 
was positively correlated with NIS (r = 0.31, p = 0.0015), 
but TNS was not correlated with PIS. There was a significant 
positive correlation between plant height and PIS (r = 0.29, 
p = 0. 0025) for means across all experiments, but in indi-
vidual experiments, this association reached significance only 
in experiment GW08, with taller plants showing more disease 
than shorter plants. For detailed information on correlations 
between experiments and between traits refer to the electronic 
supplementary material (S1). Analysis of variance for PIS 
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revealed highly significant effects for all sources of variance 
(electronic supplementary material S2). The magnitude of 
genotype-by-experiment interaction was low compared to the 
effect of genotype, resulting in a high broad-sense heritability 
coefficient H2 = 0.84.

Map construction

SSR and AFLP genotyping resulted in 421 distinct poly-
morphic markers. These markers were used for map con-
struction and fell into 38 linkage groups, of which 15 could 
be assigned to genome A and 14 to genome B, while nine 
groups could not be unambiguously assigned to a chromo-
some. Total genome length was 1,808 cM, partitioned into 
845 cM for genome A, 772 cM for genome B, and 191 cM 
unassigned. Average distance between markers was 4.3 cM. 
Small segregation distortion at p < 0.05 was observed over 
82 and 29 cM towards the Helidur and T. dicoccoides par-
ents, respectively. No segregation distortion was evident at 
any of the QTL regions described below.

QTL analysis

FHB spread within the spike—type 2 resistance

Using SIM and CIM fitting, two QTL for PIS were iden-
tified, mapping to chromosomes 3A and 6B. The allele of 
the T. dicoccoides parent Mt. Gerizim #36 improved resist-
ance in both cases. Positions of these QTL and estimates 
of QTL effects for individual experiments and for means 
over experiments are listed in Table  2, and LOD profiles 
are shown in Fig. 2. The QTL on 3A reached LOD > 3 in 
experiment GS08, GW07, and GW08. The support interval 
of this QTL stretched over a distance of 30  cM by SIM, 
and was narrowed to 12 cM by CIM. QTL on 6B exceeded 
LOD 3 in experiments GS08, GS09, and GW08, but was 

not detected in experiment GW07. The support interval 
spanned a distance of 13 cM by SIM and CIM. Both QTL, 
on 3A as well as on 6B, exceeded the critical LOD value of 
α < 0.01 estimated by permutation tests for means averaged 
over experiments.

Whereas QTL on 3A and 6B explained 17 and 19  %, 
respectively, of the phenotypic variance there were still indi-
vidual lines fixed for the favorable allele on either 3A or 6B 
that appeared FHB susceptible (Fig. 1). QTL on 3A and 6B 
together explained 29  % of the phenotypic variance. Nine 
lines were homozygous for the resistance-improving alleles 
at both QTL and these nine lines expressed resistance levels 
similar to that of the resistance donor Mt. Gerizim #36. But 
there were a few lines with moderate resistance scores that 
carried none of the positive alleles on 3A and 6B (Fig. 1).

Weak but not significant associations between Rht-B1 
and PIS were apparent in experiments GW07 and GW08 
(results not shown), in which the semi-dwarf allele Rht-B1b 
was associated with improved resistance to fungal spread.

Plant height

The Rht-B1 locus had a pronounced effect on plant height 
and accounted for 82 % of phenotypic variance. The mutant 
allele for reduced height was contributed by the T. durum 
parent Helidur. Plants homozygous for the Rht-B1b allele 
were on average 36 cm shorter than lines homozygous for 
the Rht-B1a wild-type allele (Table 3). 

Discussion

In this study we analyzed resistance to Fusarium spread 
within the spike (type 2 resistance) in four greenhouse 
experiments. Correlations between the individual green-
house experiments were moderate. The high broad-sense 

Table 1   Means of parents and population, minimum and maxi-
mum values of the BC1F6 population, least significant differences at 
α < 0.05 (LSD0.05) and broad-sense heritability (H2) or repeatability 

of the analyzed traits: percentage of infected spikelets per spike (PIS), 
number of infected spikelets per spike (NIS), total number of spike-
lets per spike (TNS) and plant height

a  Means averaged over all experiments
b  Repeatability

Mt. Gerizim #36 Helidur Mean Max Min H2 LSD0.05

PIS

 Overall meana 24.3 47.9 46.3 84.7 17.2 0.84 15.5

 GW07 29.4 49.1 36.5 93.4 6.1 0.60b 18.1

 GS08 35.0 56.8 58.9 100.0 18.3 0.77b 14.6

 GW08 11.1 35.0 45.9 96.3 6.5 0.79b 16.7

 GS09 21.6 50.8 43.9 90.4 10.8 0.78b 12.0

NISa 2.7 7.6 7.0 13.9 2.1 0.84 2.5

TNSa 11.3 15.8 15.1 18.3 12.4 0.88 0.8

Plant height (cm)a 90.8 71.6 86.4 128.9 58.3 0.94 17.8
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Table 2   Locations and estimates of QTL for FHB spread measured by percentage of infected spikelets (PIS)

LOD values > 3 are shown in bold

* α 0.1 < LOD; ** α 0.05 < LOD; *** α 0.01 < LOD
a  Positive additive effects denote PIS-reducing effect of the Mt. Gerizim allele
b  Percentage of phenotypic variance explained by the QTL
c  Significance thresholds were estimated by permutation tests (number of iterations = 1,000)

Chromosome 3A Chromosome 6B

Closest marker Xs13m26_1 Xs13m24_2

Flanking markers Xgwm779–Xgwm1121 Xs23m17_5–Xgwm626

Adda % PVb LODc Adda % PVb LODc

Simple interval mapping

 GS08 9.5 16 4.0 ** 9.6 20 5.0 ***

 GS09 7.3 12 2.7 10.4 22 5.4 ***

 GW07 10.2 14 3.3 4.2 3 0.6

 GW08 13.3 17 4.2 ** 9.9 14 3.4 *

 Overall mean 9.2 17 4.2 ** 8.5 19 4.5 ***

Composite interval mapping

 Overall mean 8.0 22 5.6 *** 7.3 22 5.5 ***
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heritability estimate for means across experiments confirms 
that a large proportion of the observed variation was due to 
genetic variation in the population.

QTL for FHB resistance

Two genomic regions, one on chromosome 3A and a sec-
ond on 6B, were found associated with type 2 resistance to 
FHB. The QTL on 3A was coincident with a QTL previ-
ously detected in two unrelated mapping populations, which 
used either the T. dicoccoides accession Israel A (Chen et al. 
2007; Otto et al. 2002) or the T. dicoccoides line Mt. Hermon 
#22 (Gladysz et al. 2007) as resistance donors. Either study 
identified marker Xgwm2 as closest to the QTL peak, similar 
to the finding in our study using the T. dicoccoides line Mt. 
Gerizim #36. It appears likely that these three T. dicoccoides 
lines carry the same resistance allele at the 3A QTL.

The QTL on 6B was detected in all experiments but 
GW07. The inoculation technique used in GW07 dif-
fered from the other experiments, in that the inoculum was 
applied without physically injuring the florets. This resulted 
in a comparatively low infection level (see Table  1). But 
given that this technique was applied in only one experi-
ment, no final conclusion can be drawn. The Fhb2 QTL on 
chromosome 6B has been finely mapped near Xgwm133 in 
bread wheat (Cuthbert et al. 2007) and repeatedly detected 
in multiple independent studies (Buerstmayr et  al. 2009). 
The QTL was also found associated with FHB resistance 
in two tetraploid studies (Somers et  al. 2006; Buerstmayr 
et al. 2012). In the present study the QTL position on 6B 
was placed in a 15 cM interval and reached its highest LOD 
near Xgwm626. Xgwm133 mapped 28  cM proximal to 
Xgwm626 in our map and was not near the peak of the QTL 
for type 2 FHB resistance. We accordingly conclude that 
the 6B QTL of this study is not allelic to Fhb2.

Several lines in the mapping population were more dis-
eased than the susceptible parent Helidur. This indicates 
that Helidur may possess small effect resistance alleles 
which remained non-discovered in this study. Given that 
the mapping population was relatively small (103 lines), the 
results on the detected QTL effects should be interpreted 

with caution and certainly need further validation. Despite 
that, the excellent performance of lines with both favorable 
alleles fixed provides evidence that resistance expression is 
more stable when more than one resistance QTL are com-
bined. Potentially, improved and stable resistance can be 
achieved through pyramiding two or more resistance QTL, 
as examples in bread wheat have shown (e.g., Agostinelli 
et al. 2012). Still, the lines with improved type 2 resistance 
of this study need to be field evaluated using spray inocula-
tions in order to assess their overall resistance performance 
under natural conditions.

Plant height and its association with FHB spread

The Rht-B1b allele contributed by the T. durum parent Heli-
dur reduced plant height considerably. Its effect on plant 
height was similar to those observed in three separate back-
cross populations obtained from crosses of the resistance 
donor T. dicoccum-161 to Helidur, Floradur or DS-131621 
(Buerstmayr et  al. 2012). Results of several studies have 
suggested that type 2 resistance is less dependent on plant 
height than type 1 resistance (Steiner et  al. 2004; Srini-
vasachary et  al. 2008, 2009; Somers et  al. 2003). Moreo-
ver, Yan et al. (2011) reported a positive influence on type 
2 resistance for five of ten different Rht genes. Isolines car-
rying the Rht-B1b allele expressed a small but significantly 
improved type 2 resistance in his study. Similarly, Srini-
vasachary et al. (2009) found a positive influence of the Rht-
B1b semi-dwarf allele on type 2 resistance. These findings 
are in agreement with our observations in this study: we 
observed a weak dependence between plant height and FHB 
spread, with shorter lines developing lower type 2 FHB 
severity. Contrasting results were obtained in several other 
studies (Hilton et  al. 1999; Xue et  al. 2010; McCartney 
et al. 2007; Buerstmayr et al. 2012). These populations were 
evaluated for FHB incidence (type 1 resistance) and/or FHB 
severity in the field after spreading infected plant residuals 
onto the soil and/or after spray inoculation. In all of these 
experiments, taller plants developed lower FHB symptoms, 
and QTL for FHB severity or FHB incidence coincided with 
the Rht-B1 gene. This is supported by a QTL meta-analysis 
which reported overlapping QTL for plant height and FHB 
severity after spray inoculation near Rht-B1 (Mao et  al. 
2010). Miedaner and Voss (2008) tested near isogenic lines 
(NILs) carrying different Rht genes using spray inoculation 
in field tests. They observed an increase of FHB severity for 
NILs carrying Rht-B1b, but not significantly different to the 
tall wild-type lines. In summary we conclude that the semi-
dwarf allele Rht-B1b does not interfere with type 2 FHB 
resistance when tested under controlled greenhouse condi-
tions, but that it can, depending on the genetic background, 
increase overall FHB severity under high infection pressure 
and open field conditions (Srinivasachary et al. 2009).

Table 3   Location and estimates of QTL for plant height by SIM

*** α 0.01 < LOD
a  Positive additive effects denote trait-reducing effect of the Mt. Geri-
zim allele
b  Percentage of phenotypic variance explained by the QTL
c  Significance thresholds were estimated by permutation tests (num-
ber of iterations = 1,000)

Trait Chromo-
some

Closest 
marker

Adda %PVb LODc

Plant height 4B Rht-B1 −18.0 82.1 38.1 ***
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Conclusions

Wild emmer wheat is an important genetic resource for 
past and future wheat improvement (Nevo et  al. 2002). 
Selected wild emmer lines such as Mt. Hermon #22 (Gla-
dysz et al. 2007) and Mt. Gerizim #36 (this study) can be 
used as sources for improving FHB resistance particularly 
for durum wheat breeding. FHB resistance in tetraploid 
wheat is inherited in a quantitative manner as in bread 
wheat, and several QTL have been genetically mapped and 
are therefore amenable for marker-assisted breeding. Com-
bining two or more QTL via marker-assisted backcrossing 
is suggested as a promising breeding strategy leading to 
novel cultivars with enhanced FHB resistance and reduced 
risk of Fusarium mycotoxin contamination.
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